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ABSTRACT

We study the vanishing neighbourhood of non-isolated singularities of

functions on singular spaces by associating a general linear function. We

use the carrousel monodromy in order to show how to get a better control

over the attaching of thimbles. For one-dimensional singularities, we

prove obstructions to integer (co)homology groups and to the eigenspaces

of the monodromy via monodromies of nearby sections. Our standpoint

allows one to find, in certain cases, the structure of the Milnor fibre up

to the homotopy type.

1. Introduction

In the landscape of singularities of holomorphic functions, the non-isolated sin-

gularities play a particular role. Their study was initiated in the ’70 and ’80

by Y. Yomdin, R. Randell and Lê D.T. As a natural first extension of iso-

lated singularities, the case of 1-dimensional singularities got special attention.

The first results about the homotopy type of the Milnor fibre were proved by

D. Siersma [Si1] and his studies opened the way to a series of other results for 1,

2 or higher dimensional singularities, by R. Pellikaan, T. de Jong, A. Zaharia,

A. Némethi, M. Shubladze, G. Jiang, J. Fernandez and others. Meanwhile,

the progress in stratified Morse theory by Goresky and MacPherson allowed

one to treat singular holomorphic functions on singular spaces. The viewpoint

due to Lê D.T. which consists in associating to the function f a general linear
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function l and studying the couple (l, f) gave rise to new insight in the topic

of non-isolated singularities. In particular, the study of the “box” neighbour-

hood lead to new results more recently, which exploit further the properties of

the monodromies appearing in the fibration defined by (l, f) (cf D. Siersma,

J. Steenbrink, M. Saito, D. Massey and others). There are some other streams

of research, which we shall not mention here.

Let f : (X, 0) → C be a holomorphic function defined on the germ (X, 0) of

a singular space of pure dimension n + 1 ≥ 2, embedded into (Cm , 0) for some

m. We work under the following technical but natural condition: “the rectified

homotopical depth of X is maximal”, which includes the classical case X is

non-singular, but also the case X is a singular complete intersection. Our aim

is to find how the Milnor fibre F of f is built from ingredients associated to

restrictions of f to lower dimensional slices of the space, which have therefore

lower dimensional singularities.

It is well known that the Milnor fibre F of f is (n − k)-connected, where

k denotes the dimension of the stratified singular locus of f . This follows by

a Lefschetz-type argument, from comparing F to the Milnor fibre F ′ of the

restriction f|l=0, where l is general enough. We go beyond this comparison and

we relate F to F ′ via a slice {l = η} near to the origin (Theorem 2.2): Hn(F )

and Hn−1(F ) are the kernel and respectively the cokernel of a certain morphism

H̃n(F ∪ F ′
D)→ Hn(F ′

D, F ′), see Figure 1 for a rapid location. This comparison

allows us to exploit the l-monodromy and deduce bounds for the betti numbers

bn−1(F ) and bn(F ). The pair (F ′
D, F ′) has the advantage that it can further be

localised, by excision, in a tubular neighbourhood of the slice Sing f ∩F ′
D of the

singular locus.

We then specialise to the case dimSing f = 1 and n ≥ 2. Here we show how

the l-monodromy is related to the “vertical monodromy” of the transversal sin-

gularities of a slice near to the origin. We get more explicit bounds for bn−1(F )

and for the eigenspaces and the maximal Jordan blocks of the monodromy, as

well as divisibility results for the characteristic polynomial of the monodromy

h, in terms of transversal singularities. These extend to a more general setting

some of Siersma’s results proved in [Si2]. Our proof is based on the controlled

attaching of cells, whereas Siersma’s proof uses special variation maps.

We finally show how our standpoint allows to recover Siersma’s bouquet result

for “line singularities” and throws a new light on it (Corollary 4.3). Further

developments are in progress as a joint work with Dirk Siersma [ST].
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2. A geometric viewpoint

Let (X, 0) be a germ of a singular space of pure dimension n + 1 ≥ 2 and let

f : (X, 0) → C be a holomorphic function. We shall assume that our space

(X, 0) satisfies one of the following two conditions (where the former implies the

latter). We refer to [HL] for the notions of rectified homotopical depth rhd(X)

and rectified homological depth rHd(X).

(*) rhd(X) ≥ dim0 X ,

respectively

(**) rHd(X) ≥ dim0 X .

These conditions are both true in case X is an arbitrarily singular complete

intersection. It was proved by Hamm and Lê [HL] that condition (*), resp. (**),

implies that the complex link of (X, p), for any p, is homotopically equivalent

to a bouquet of n-spheres, respectively has the reduced homology concentrated

in dimension n. These also imply that any function with a stratified Morse

singularity at some point of X has a Milnor fibre homotopy equivalent to a

bouquet of n-spheres, resp. with reduced cohomology concentrated in dimension

n. The condition rHd(X) ≥ n + 1 is further equivalent to the fact that the

constant sheaf CX is perverse.

We denote by Sing φ the singular locus of some holomorphic map φ: (X, 0)→

(C p , 0), defined as the closure of the union of the singular loci Sing φ|Wi
of the

restrictions of φ to the strata Wi of some Whitney stratification W of X which

we fix throughout the paper.

Let us fix a generic linear function l: (X, 0)→ C . Let Bε denote a Milnor ball

for f , that is the intersection of a small enough ball at the origin of the ambient

space with a suitable representative of the germ (X, 0) and let Dη ⊂ C denote

the closed disk of radius η centred at the origin. Lê D.T. showed (see e.g. [Lê2])

that one can use a neighbourhood “box” B := Bε ∩ l−1(Dη′) ∩ f−1(Dγ′) and

the map (l, f): B → C 2 in order to describe the local Milnor fibration of f and

its relation to the Milnor fibration of the slice f|l=0. We have already used this

approach in [Ti1, Ti2] in order to get control over the attaching of cells via the

monodromy, in case of a function f with isolated singularity. Let us set the

notation and recall several facts.

If l is general enough, then the polar locus Γ := closure{Sing(l, f) \ {f = 0}}

is a curve on (X, 0), or it is empty. Each point of the intersections B∩Γ∩ l−1(η)

and of B ∩Γ∩ f−1(γ) is a stratified Morse singularity of the restrictions fl−1(η)

and lf−1(γ) respectively. Let us denote by ∆ := (l, f)(Γ) the Cerf diagram

in the target space C 2 . Take η ≪ η′ and γ ≪ γ′ such that the intersection
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(Dη×{γ})∩∆ with the Cerf diagram ∆ is contained in the interior of Dη×{γ}.

We use the following notation and remarks:

(1) F := B ∩ f−1(γ) ∩ l−1(Dη) is the Milnor fibre of f . Instead of the point

γ one can take any point on ∂Dγ .

(2) F ′ := B ∩ (l, f)−1(η, γ) is homeomorphic to the Milnor fibre of the re-

striction f|{l=0} (but of course has a different monodromy over the circle

{η} × ∂D̄η).

F

F’D

F’
f= γ

l=η

δ

Dγ

F

l

’γDf

Dη
 

Figure 1. Cerf diagram.

(3) FD := B ∩ f−1(Dγ) is a Milnor tube, hence contractible.

(4) F ′
D := FD ∩ l−1(η) retracts to the fibre B ∩ f−1(0) ∩ l−1(η), which is the

complex link of the hypersurface f−1(0) at the origin.

We collect below a bunch of results from the literature, which will play a key

role in the following.

Facts 1.1:

(a) Under condition (*), the complex link of X at 0 is homotopy equivalent to a

wedge of spheres ∨Sn. The complex link of the hypersurface f−1(0) at the

origin, denoted lk(f−1(0), 0), is homotopy equivalent to a wedge of spheres

∨Sn−1. This follows from the fact that f−1(0) inherits the property (*),

see [HL, Th. 3.2.1]. Consequently F ′
D is homotopy equivalent to a wedge

of spheres ∨Sn−1, since F ′
D

ht
≃ lk(f−1(0), 0) .

(b) The complex link of X at 0, denoted lk(X, 0), is obtained by attaching to

the complex link of f−1(0) at the origin, denoted lk(f−1(0), 0), a number

of cells, which are all of dimension n if condition (*) is assumed. Each cell

corresponds to a point of intersection of the polar curve Γ with the slice

l−1(η), see [Lê1, Lê2, Ti1]. In Figure 1, this can be visualised as attaching

to F ′
D the cells corresponding to the intersection Γ ∩ l−1(η).
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(c) There is a topological disk {η} × δ containing all intersection points

∆ ∩ {l = η} and is disjoint from the disk {η} × Dγ . This disk can be

made sliding along the Cerf diagram to a zone W ⊂ Dη × {γ}. This pro-

cedure, due to Lê D.T., is known as “rabattement dans le diagramme de

Cerf” and was used in our bouquet structure theorem [Ti1] for the Milnor

fibre of function germs f with isolated singularity. So, revisiting the point

(a) above, after attaching to F ′
D the cells from the zone (l, f)−1(W ), which

we have identified to (l, f)−1({η}×δ), we get the complex link of X , hence

a bouquet of n-spheres. If we continue to attach the other n-cells coming

from the intersection points of Γ with F which are outside (l, f)−1(W ),

then, as result, we can only get more n-spheres in the bouquet.

Let h denote the monodromy on the (co)homology of the fibre of f . This is

induced by a geometric monodromy which acts on F and on F ′, and which we

shall denote by the same symbol h. It acts as the identity on FD and on F ′
D.

There is also the action of the geometric l-monodromy: on FD, F and F ′
D it

is isotopic to the identity, but it may be non-trivial on F ′. Let L denote the

action of the l-monodromy on the (co)homology.

Theorem 2.2: Let (X, 0) satisfy the condition (**) and let f : (X, 0)→ C be

any holomorphic function germ. Then the following sequences are exact:

0→ H̃n(F )→ H̃n(F ∪ F ′
D)→ Hn(F ′

D, F ′)→ H̃n−1(F )→ 0

and

0→ H̃n−1(F )→ Hn(F ′
D, F ′)→ H̃n(F ∪ F ′

D)→ H̃n(F )→ 0

and there are natural isomorphisms for all j ≥ 1:

H̃n−j−1(F ) ≃ Hn−j(F
′
D, F ′), resp. H̃n−j−1(F ) ≃ Hn−j(F ′

D, F ′).

The monodromies h and L act on all these morphisms.

Proof: Let us first consider the union F ∪ F ′
D, where F ∩ F ′

D = F ′. Note that

both the monodromies h and l are in general not isotopic to the identity on

F ∪F ′
D. From Facts 2.1(b)(c) it follows that H̃∗−1(F ∪F ′

D) = H̃∗−1(∨Sn), and

one can also deduce the exact number of spheres in the bouquet.

Since FD is contractible, we get H∗(FD, F ∪F ′
D) = H̃∗−1(F ∪F ′

D). The same

is true in cohomology.

Consider next the pair (F ∪ F ′
D, F ). By excision we get the isomorphism:

H∗(F ∪ F ′
D, F )

≃
← H∗(F

′
D, F ′),
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and its similar counterpart in cohomology. The geometric monodromies h and

l act on all these sequences.

Let us then consider the long exact sequence of the triple (FD, F∪F ′
D, F ). This

splits into short sequences since the homology H∗(FD, F ∪ F ′
D) is concentrated

in dimension n+1. In order to complete the proof of our complete claim we just

have to recall the isomorphism H∗(FD, F ) = H̃∗−1(F ). The proof in cohomology

parallels the one in homology.

We derive the following bound for the betti number bn(F ).

Corollary 2.3: bn(F ) ≤ λ0 + bn(lk(X, 0)), where λ0 = mult0(Γ, f−1(0)) −

mult0(Γ, l−1(0)), and where mult0 denotes the intersection multiplicity at 0.

Proof: This follows from the first map in the above theorem and the compu-

tation dim H̃n(F ∪ F ′
D) = λ0 + bn(lk(X, 0)) explained in Facts 2.1(b)(c). Also

remember that the (co)homology of lk(X, 0) is concentrated in dimension n,

since condition (**) is assumed. Note that λ0 depends only on (X, 0) and f but

not on the choice of generic l.

If X is nonsingular, then lk(X, 0) is acyclic and we recover the well-known

inequality bn(F ) ≤ λ0.

We further investigate the pair (F ′
D, F ′). Let then T denote a tubular neigh-

bourhood of Sing f ∩ F ′
D within F ′

D. Therefore T retracts to the complex link

of Sing f at the origin.1 We get:

Corollary 2.4:

(a) In Theorem 2.2 one may replace H∗(F
′
D, F ′) by H∗(T, T ∩ F ′), and simi-

larly in cohomology.

(b) coker(L−id | Hn(T, T∩F ′)) surjects onto H̃n−1(F ), respectively H̃n−1(F )

injects into ker(L− id | Hn(T, T ∩ F ′)). Consequently

b̃n−1(F ) ≤ dimker(L − id | Hn(T, T ∩ F ′)).

Proof: (a) The substitution is due to the excision: H∗(F
′
D, F ′)

≃
← H∗(T, T∩F ′).

Point (b) follows from (a) and from the exact sequences of Theorem 2.2 on

which the l-monodromy acts such that L is the identity on the (co)homology of

F .

1 In case Sing f is a complete intersection this is homotopy equivalent to a wedge
of spheres of dimension dim Sing f − 1.
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Remark 2.5: Since the geometric l-monodromy is the identity on F , it induces

the identity on Hn−j(F
′
D, F ′) and on Hn−j(T, T ∩F ′) for all j ≥ 1, by Theorem

2.2 and Corollary 2.4(a).

3. Case dimSing f = 1

We specialise to the case dimSing f = 1 and point out several consequences

of the preceding results. We still assume in this section that dimX ≥ 3 and

that (X, 0) satisfies the condition (**). In case of dim Sing f = 1, the tubular

neighbourhood T consists of small Milnor balls Bi at the finitely many points

Sing f ∩ F ′
D. Let Fi denote the Milnor fibre of such an isolated singularity of

the restriction of f to the transversal slice F ′
D. Then the geometric monodromy

h on F restricts to the Milnor monodromy hi of Fi, for each Fi. Let L denote,

as before, the action on (co)homology of the l-monodromy. The l-monodromy

acts on the points Sing f ∩F ′
D by certain permutations. Each point comes back

to itself after applying a number of times the l-monodromy. We denote by νi

the action on the (co)homology of Fi of the come-back monodromy2. Actually

the fibre Fi as well as νi depend only on the component Σj of Sing f . We then

get:

Proposition 3.1: Let n ≥ 2. If condition (**) holds and if dimSing f = 1

then

coker(L− id | Hn(T, T ∩ F ′)) ≃
⊕

j

coker(νj − id | Hn−1(Fj))

where the direct sum is taken over the components Σj of Sing f .

Proof: We observe that H∗(T, T ∩ F ′) is isomorphic, by excision, to

⊕

i

H∗(Bi, Fi) =
⊕

i

H̃∗−1(Fi),

where the sum is taken over all the singular points which are in the linear slice

F ′
D. As shown in [Si3] or [Ti2], there is a cyclic movement of a singular point

belonging to some component Σj of Sing f . This yields a particular shape of

the matrix of L: one can start with a basis e of Hn−1(F1) and then (Lk(e)) is a

basis for Hn−1(Fk+1), for all k ∈ 1, sj − 1, where sj is the number of points of

intersection of a hyperplane slice l = η with the component Σj of Sing f . This

2 I.e. by definition the so-called vertical monodromy, cf [St, Si2].
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gives the following direct sum splitting:

coker(L− id |
⊕

i

Hn−1(Fi)) ≃
⊕

j

coker(νj − id | Hn−1(Fj)),

where in the second sum we take one point for each component Σj of Sing f .

We get the following consequence, and in particular a divisibility result for the

characteristic polynomial charh|Hn−1(F ) of the monodromy h acting on Hn−1(F ).

We keep assuming n ≥ 2.

Corollary 3.2:

(a) bn−1(F ) ≤ dim
⊕

Σj
coker(νj − id | Hn−1(Fj)).

(b) charh|Hn−1(F ) divides
∏

Σj
charhj | coker(νj−id|Hn−1(Fj)).

In particular charh|Hn−1(F ) divides the product
∏

Σj
charhj |Hn−1(Fj).

In case of non-singular X , this result was proved by Dirk Siersma [Si2] with

a different proof. A weaker version, yet for singular (X, 0) satisfying (**), was

proved in [Ti2].

Proof: From Corollary 2.4(b) and Proposition 3.1 we deduce the surjection:

⊕

j

coker(νj − id | Hn−1(Fj))� Hn−1(F ),

from which (a) follows immediately.

(b) The monodromy h acts on the preceding surjection. On the left hand

side this amounts to the action of
⊕

j hj . One remarks that the monodromies

hj and νj commute. Then apply charh to this and get the claimed divisibility.

Let us remark that the analogous results are true in cohomology by standard

reasons; one just replaces “surjection” by “injection” and “coker” by “ker”.

Let bλ(V, µ) denote the dimension of the eigenspace corresponding to the

eigenvalue λ of the linear operator µ acting on the vector space V . Let Jλ(V, µ)

denote the maximum of the sizes of the Jordan blocks. With these notations

we have:

Corollary 3.3: In cohomology, let Kj := ker(νj − id | Hn−1(Fj)). Then:

(a) Hn−1(F ) ⊂
⊕

Σj
Kj .

(b) bλ(Hn−1(F ), h) ≤
∑

Σj
bλ(Kj , hj).
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(c) Jλ(Hn−1(F ), h) ≤
∑

Σj
Jλ(Kj , hj).

Proof: (a) is clear from the preceding remark.

(b) and (c). The monodromy h acts on the inclusion morphism (a), so h −

λ id acts too. On the right hand side term, this amounts to the action of hi,

respectively of hi − λ id, on Hn−1(Fi), independently for each i. We know that

hi commutes with νi.

The study may be pursued in case of higher dimensional singular locus Sing f ;

this is work in progress jointly with Dirk Siersma [ST].

4. Controlled attaching

This is a study of the cell-attaching described at the end of Facts 2.1(b) in the

case dimSing f = 1 and (X, 0) = (C n+1 , 0). We refer to the notation and results

in §2; let us recall that condition (*) is fulfilled in this case.

We shall use, and therefore need to recall from [Ti1] the construction of rela-

tive thimbles associated to the pair (F, F ′) which are adapted to the carrousel

monodromy. The disk Dη × {γ} will be called carrousel disk.

Our study on the attaching of thimbles starts with the following 5 steps. We

refer to Figure 1. The first 3 steps apply to a singular space (X, 0) under the

condition (*).

(1) Our assumptions imply that F ′ is a bouquet of n−1 spheres. The restriction

of f to the slice l = η has only isolated singularities: the intersections with

Sing f and the intersections with Γ (which are of Morse type, by the genericity

of l). Therefore this is a deformation of the singularity f|l=0 which is a partial

Morsification.

(2) The result of attaching to F ′ the thimbles corresponding to the singularities

in the zone (l, f)−1({η} × δ) is, up to homotopy type, a bouquet of spheres

of dimension n − 1. The number of spheres is equal to the sum of the Milnor

numbers of the singularities of the slice {f = 0}∩{l = η}. Now, remember from

Facts 2.1(b) that we may identify the zone (l, f)−1({η} × δ) to (l, f)−1(W ),

where W is a certain open subset of the carrousel disk Dη×{γ} defined in [Ti1,

§2].

The Milnor fibre F := (l, f)−1(Dη×{γ}) is obtained from F ′ := (l, f)−1(η, γ)

by attaching a number of n-cells, each cell corresponding to one of the inter-

section points Γ ∩ F . The total number of cells is equal to the intersection

multiplicity mult0(Γ, {f = 0}). We first attach to F ′ the thimbles from the

zone (l, f)−1(W ). We have seen before what is the result of this attaching.
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(3) The carrousel model of the monodromy, introduced by Lê D.T. [Lê2], to-

gether with the refined description of the carrousel monodromy from [Ti1], see

[Ti1, Fig. 1, pag. 233], enables one to describe how the further attaching occurs.

If ∆ is not empty, then there exist thimbles outside the zone (l, f)−1(W ); this

is due to the fact that all the components of ∆ are tangent to the horizontal

axis {f = 0}.

Let us attach one “next” thimble, which is out of the zone (l, f)−1(W ). By the

main construction in [Ti1], this thimble is the image by the carrousel monodromy

of a thimble from the zone (l, f)−1(W ). Call the latter thimble t0 and the former

t1. Say t0 attaches to F ′ over the cycle a. By the construction in [Ti1], the

thimble t1 will attach to F ′ exactly over the cycle h1(a), where h1 denotes the

geometric f -monodromy in the slice F ′
D around the singular points Sing f ∩{l =

η}. All the above explanation is already contained in [Ti1], where the case

dimSing f = 0 is treated; in that case the monodromy h1 is geometrically

trivial.

(4) What is h1(a) more precisely in the case (X, 0) = (C n+1 , 0) and dimSing f =

1? We consider the cycles in homology or homotopy and we denote by [·] their

equivalence classes. In case of homotopy groups πn, we impose that n ≥ 2, and

for relative homotopy groups (groups of classes of thimbles) that n ≥ 3. The

additive notation can and will be used in these ranges.

Let us remark, firstly, that the f -monodromy in the slice F ′
D around the

singular points Sing f ∩ {l = η} splits into the direct sum of the monodromies

around each of these points, since they are all in the same fibre of f . Secondly,

that each such singularity may be more complex than a Morse singularity and

so the monodromy around each of such singular points is the Coxeter element

of some Morsification of the corresponding singularity. Then, by applying the

Picard–Lefschetz rules to the monodromy h1 we get

(1) h1([a]) = [a] +
∑

r

kr[br],

where kr is an integer and br denotes one of the cycles vanishing at some point

of Sing f ∩ {l = η} (and where the sum is taken over these cycles).

(5) After all this discussion, we come back to the attaching of t0 and t1. Let a

be as chosen before. Notice now that the attaching of t0 over a kills a, in other

words a is contractible in the space F ′ ∪ (l, f)−1(W ). Next, the attaching of t1

to F ′∪ (l, f)−1(W ) is over a cycle homotopy equivalent to [a]+
∑

r kr[br]. Since

a is contractible in F ′ ∪ (l, f)−1(W ), this new attaching is really over the cycle∑
r kr[br]. We get the following conclusion:
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Proposition 4.1: Let (X, 0) = (C n+1 , 0) and dimSing f = 1. Assume that the

linear function l is sufficiently general. Then F is obtained from F ′∪(l, f)−1(W )

by attaching thimbles defined by the carrousel monodromy, with attaching maps

of the type
∑

r kr[br], where br’s are the cycles of F ′ vanishing at the singular

points Sing f ∩ {l = η}.

An exceptional case is when no thimbles are attached to F ′ ∪ (l, f)−1(W ).

This is equivalent to ∆ being not tangent to the axis f = 0, which can only

happen if ∆ = ∅ for generic l, in which case one has F
ht
≃ F ′. This is in turn

equivalent to the fact that the singular locus Sing f is a line (by the non-splitting

principle of Lê D.T.) and that the Milnor number of the transversal singularity

is constant along the line. The equivalences can be deduced from the attaching

results discussed in Facts 2.1.

Let us further remark that there exists a geometric cycle of type a (i.e. a cycle

over which one of the carrousel thimbles from the zone (l, f)−1(W ) attaches)

which has non-zero intersection with at least one of the br’s. This is due to the

fact that the cycles of types a and b are together a basis of cycles (which one

may arrange to be a geometric basis) of the isolated singularity at the origin of

f|l=0. Their intersection graph is connected, cf [La]. It is then an easy exercise3

to show that there exists at least one [br] in the sum (1) such that its coefficient

kr is non-zero.

The attaching map is precisely the boundary map ∂: Hn(F, F ′)→ Hn−1(F
′)

in homology. In homotopy, the additive notation has a good meaning only if

n ≥ 3 and then the attaching map is the corresponding boundary morphism

∂: πn(F, F ′; .) → πn−1(F
′; .). Now recall that the monodromy h acts on the

exact sequence of the pair (F, F ′), and its action on Hn−1(F
′) or πn−1(F

′) is

precisely h1. Therefore h1(∂(α)) = ∂(h(α)) for any linear combination α of

carrousel thimbles. This proves the following, where coefficients are in some

field:

Corollary 4.2: Under the hypothesis of Proposition 4.1, assume in addition

that the singular locus Sing f is not a line with constant transversal Milnor num-

ber. Then the betti number bn−1(F ) is strictly less than the sum
∑

i bn−1(Fi)

of Milnor numbers of the singularities in the slice {l = η} ∩ {f = 0}.

This corollary has been announced independently by Lê D.T. and D.B. Massey

[LM]. It is necessary to compare this result to Siersma’s one in [Si2], i.e. to

3 We may safely leave it to the reader; we give an indication at the end of the
paper (*).
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Corollary 3.2(a) for the case of a non-singular space germ (X, 0). One then

notices that, if Sing f is a union of lines, then Corollary 4.2 provides a bound

which might be better by one than Siersma’s bound. However, in all other cases

(i.e. when Sing f is not a union of lines) Siersma’s result gives a better bound,

or at least the same.

Corollary 4.3: Let f define a line singularity with A1-transversal generic

singularity type and different from the transversal type at the origin. Let [b] be

the cycle vanishing at the A1-transversal generic singularity. Then:

(a) In homology, there exists a linear combination of carrousel thimbles which

attaches to F ′ ∪ (l, f)−1(W ), with attaching map [b].

(b) The Milnor fibre F of f is homotopy equivalent to a bouquet ∨Sn.

Proof: Let [ai] denote the cycles of F ′ which are killed by carrousel thimbles

from the zone (l, f)−1(W ). We claim that there exists a linear combination of

carrousel thimbles [ti] such that the attaching map to F ′ is

∑

i

sih1(t
0
i ) 7→ [b] +

∑

i

si[ai],

where si ∈ Z.

The claim follows from the following fact: if pi = 〈ai, b〉 denotes the inter-

section pairing then gcd{|pi|}i = 1. Indeed, if v := gcd{pi}i > 1 then all pi’s

are zero modulo v, which contradicts the fact that the Dynkin diagram of f|l=0

relative to a distinguished basis is connected in the homology with coefficients

any Z-module (see e.g. [AGV, p. 77]).

Since gcd{|pi|}i = 1, there exist integer coefficients si such that
∑

i sipi =

1. Therefore 〈
∑

i si[ai], [b]〉 = 1. By Proposition 4.1 the linear combina-

tion of thimbles
∑

i sih1(t
0
i ) attaches to F ′ ∪ (l, f)−1(W ) with attaching map

〈
∑

i si[ai], [b]〉[b], which is homotopy equivalent to [b]. So this attaching will kill

the cycle [b].

(b) Part (a) implies that the reduced homology of F is concentrated in dimension

n. For n ≥ 3 the above attaching result holds in homotopy too. We shall treat

the cases n = 1, 2 separately.

For any n ≥ 2 and in particular for n = 2, we may apply a result by Lê-

Saito [LS]: this says that in our situation the fundamental group of F is abelian,

hence trivial (since H1(F ) = 0). Then F has the homotopy groups of a bouquet

∨Sn, via the Hurewicz map, and therefore, by the Whitehead theorem for CW-

complexes, it is homotopy equivalent to ∨Sn. As for the case n = 1, F has
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the homotopy type of a connected 1-dimensional CW-complex, hence F
ht
≃ ∨S1.

Corollary 4.3(b) recovers, with a different proof, Siersma’s bouquet result

[Si1].
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one-dimensional singular locus, in Singularities and Differential Equations

(Warsaw, 1993), Banach Center Publ., 33, Polish Acad. Sci., Warsaw, 1996,

pp. 411–419.
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